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Abstract—In this paper, we propose two variants of adaptive
state space controllers for attitude stabilization and self-tuning
of a four-rotor aerial robot, a quadrotor. First of all, the use of
a Model Identification Adaptive Controller (MIAC) is proposed
in terms of combining a recursive least-squares estimator with
exponential forgetting with an integral discrete-time state space
controller. Furthermore, a continuous-time Model Reference
Adaptive Control (MRAC) scheme based on Lyapunov theory
is applied to the simplified dynamics of a quadrotor, which
guarantees global asymptotic stability for at least linear overall
systems. The effectiveness of the suggested adaptive methods is
demonstrated in simulations with a quaternion-based nonlinear
dynamic model of a quadrotor derived in this work. The results
are compared to a designed nonadaptive integral state space
controller.

Index Terms—UAV, VTOL, quadrotor, adaptive control, iden-
tification, stabilization

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are a class of mobile
robots which recently received considerable interest. This
especially holds for quadrotors that belong to the so-called
Vertical Take-Off and Landing (VTOL) systems. A quadrotor
is an UAV with four rotors in cross configuration whose
motion behavior is influenced solely by changing its indi-
vidual propellers’ speeds. This is mainly done by use of
lightweight, highly efficient brushless direct current motors
with advantageous dynamic properties. In contrast to heli-
copters, quadrotors have better maneuverability, are easier and
cheaper to produce due to simpler mechanics and are therefore
more and more favored [1], [2]. However, they require more
complex control algorithms in order to successfully stabilize
the nonlinear unstable multivariable system. In the past, a
considerable amount of work has been done to fulfill this
requirement. The following list, which is not intended to
be exhaustive, provides a short overview over some of the
contributions.

• P(I)D control [1], [3], [18]
• PD2 control [3], [4]
• Sliding mode control [1], [5]
• Adaptive sliding mode control [2]
• State-dependent Riccati control [1], [6]
• Backstepping control [1], [5], [7]
• Feedback linearization [2], [8], [9]
• H∞ control [10]

The present paper focuses on the adaptation of the stabilization
control loops for coping with either varying or even unknown
system inertia tensor. This is especially useful for the increas-
ing amount of modular quadrotor platforms which will often
change sensor configuration or load.

The remainder of this paper is structured as follows. In
Section II, the mathematical model of a quadrotor UAV is
presented in terms of Euler angles as well as in a more sophis-
ticated quaternion representation which is used for simulation
studies. Section III explains the quadrotor control concept
without adaptive extensions and the design of a discrete-time
integral state space controller for roll and pitch movements.
This serves as the basis for the comparison with the two
adaptive variants presented in Section IV which are considered
the core of this paper. First, the use of a Model Identifi-
cation Adaptive Controller (MIAC) is proposed in terms of
combining a recursive least-squares estimator with exponential
forgetting with an integral discrete-time state space controller.
Furthermore, a continuous-time Model Reference Adaptive
Control (MRAC) scheme based on Lyapunov theory is applied
to the simplified dynamics of a quadrotor which guarantees
global asymptotic stability for at least linear overall systems.
Simulation results underline the effectiveness of the proposed
control schemes.

II. MODELING OF A QUADROTOR UAV

The dynamic behavior of a quadrotor has been described in
a variety of publications to varying degrees of complexity, see
for example [11]–[14]. The following derivation is roughly
based upon [8], but extends its mathematical description by
the full consideration of nonlinear coupling between the axes
as well as by a quaternion-based representation. Aerodynamic
side effects and elastic deformations play a minor role at slow
speeds, sufficient stiffness and realistic flight maneuvers and
are therefore omitted. The basis of the model is Fig. 1 which
shows a freely moving quadrotor in three-dimensional space.
The origin of the body-fixed frame (CS)B (basis vectors
e1B , e2B , e3B) is located at the center of gravity whose
position in earth-fixed inertial frame (CS)I (basis vectors
e1I , e2I , e3I ) is given by the vector (I)r = (x, y, z)T . The
orientation of the quadrotor is first described by three Euler
angles (roll angle φ, pitch angle θ, yaw angle ψ) combined in
the vector Ω = (φ, θ, ψ)T . A rotation from (CS)I to (CS)B is
realized by three consecutive elementary rotations. Earth-fixed
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Fig. 1. Configuration of a quadrotor

basis vectors are transfered to body-fixed ones by first rotating
around the z-axis with rotation matrix Rz(ψ), afterwards
around the new y-axis with rotation matrix Ry(θ) and at last
around the newest resulting x-axis with rotation matrix Rx(φ).
The entire orthonormal rotation matrix IRB ∈ SO(3) which
transforms direction vectors from the body-fixed to the inertial
frame results from right multiplication of elementary rotations.
With the use of the abbreviations cx for cos(x) and sx for
sin(x) it reads

IRB = Rz(ψ)Ry(θ)Rx(φ)

=

cψ −sψ 0
sψ cψ 0
0 0 1

 cθ 0 sθ
0 1 0
−sθ 0 cθ

1 0 0
0 cφ −sφ
0 sφ cφ


=

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 .

(1)

Every rotor (i = 1, . . . , 4) generates a thrust force F i propor-
tional to the square of the rotor’s angular speed ωi [8]. The
proportionality factor is called thrust factor b and is dependent
on the air density, the geometry of the rotor blade as well as
its pitch angles. In body-fixed coordinates we consequently get
(B)F i = −bω2

i

(
0 0 1

)T
. By transforming the thrust forces

to the inertial frame and making use of the principle of linear
momentum, the following equations can be introduced for a
quadrotor of mass m under gravity g:

(I)r̈ =
(
0 0 g

)T
+ IRB

4∑
i=1

(B)F i

m
(2)

Consequently, the translational movement of the quadrotor is
fully described. With the principle of angular momentum a
second vector differential equation can be formulated that also
describes the rotatory movement of the body:

(B)J (B)ω̇Q+((B)ωQ×(B)J (B)ωQ) = (B)M−(B)MG (3)

Here, J is the inertia tensor of the symmetric rigid body
around its center of mass, ωQ its angular velocity vector
with (B)ωQ = (ωx, ωy, ωz)

T , M the vector of the extern
torques applied to the body, and MG the vector of gyroscopic
torques. All values are expressed in the body-fixed frame
which facilitates the calculations tremendously. The inertia
tensor only contains diagonal entries due to the symmetric
structure, so (B)J = diag(Jx, Jy, Jz). The vector of extern
torques M is composed of the thrust differences and drag
moments of the individual rotors and, under consideration of
the rotation directions, results in

(B)M =

 Lb(ω2
2 − ω2

4)
Lb(ω2

1 − ω2
3)

d(ω2
1 − ω2

2 + ω2
3 − ω2

4)

 . (4)

The so called drag factor d describes an air resistance, the
parameter L is equal to the length of the lever between center
of mass and the four motors. The gyroscopic torques are a
result of rotational movements of the quadrotor in combination
with rotating rotors of inertia Jr and are calculated as

(B)MG = Jr


(B)ωQ ×

0
0
1

 (ω1 − ω2 + ω3 − ω4). (5)

Furthermore, the relation between the angular velocity vec-
tor ωQ and the vector of Euler angles Ω = (φ, θ, ψ)T

is required1. The nonlinear relationship can be found by a
coefficient comparison with a skew symmetric matrix S that
is determined by the rotation matrix IRB from (1) and its time
derivative: S((B)ωQ) = (IRB)T ˙IRB . For the defined Euler
angle rotation sequence, the kinematic euler equations result
in

Ω̇ =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ


(B)ωQ. (6)

The four angular velocities of the rotors are the real input
variables of the quadrotor, but in order to simplify the control
design, the artificial input vector u = (u1, u2, u3, u4)T is
defined as follows:

u =


u1
u2
u3
u4

 =


b b b b
0 b 0 −b
b 0 −b 0
d −d d −d



ω1

2

ω2
2

ω3
2

ω4
2

 (7)

The variable u1 is equal to the sum of all rotor thrust
forces and consequently matches the resulting lift-forces in
hover flight. The variables u2 and u3 correspond to forces
which result from a speed difference of two opposite mo-
tors leading to roll and pitch movements while the input
variable u4 can be interpreted as a yaw moment. Introduc-
ing the abbreviation g(u) = ω1 − ω2 + ω3 − ω4, (2), (3), (6)
and (7) can be used to formulate a nonlinear state space

1It should be mentioned that in many publications on quadrotors this
dependency is simplified by implicitly assuming small angle approximation
which results in an equality between the Euler rates Ω̇ = (φ̇, θ̇, ψ̇)T and the
angular velocity vector BωQ (see for example [8], [11]).



system ẋ = f(x,u) with the 12-dimensional state vector
x = (x1, ..., x12)T = (ẋ, ẏ, ż, φ, θ, ψ, ωx, ωy, ωz, x, y, z)

T and
the artificial input vector u = (u1, u2, u3, u4)T :

ẋ =



−(cosx4 sinx5 cosx6 + sinx4 sinx6)u1

m
−(cosx4 sinx5 sinx6 − sinx4 cosx6)u1

m
g − (cosx4 cosx5)u1

m
x7 + x8 sinx4 tanx5 + x9 cosx4 tanx5

x8 cosx4 − x9 sinx4
sin x4

cos x5
x8 + cos x4

cos x5
x9

x8x9
Jy−Jz
Jx
− Jr

Jx
x8g(u) + L

Jx
u2

x7x9
Jz−Jx
Jy

+ Jr
Jy
x7g(u) + L

Jy
u3

x7x8
Jx−Jy
Jz

+ 1
Jz
u4

x1
x2
x3



(8)

However, this Euler angles-based representation suffers from
the so called gimbal lock problematic which in this case
results in a singular configuration for pitch angles of θ = ±90◦

(division by zero).
This problem can be overcome by using a quaternion-

based description of the system [20]. The normalized quater-
nion q = (q0, q1, q2, q3)T describes a one-axis rotation by the
rotation angle σ around the so-called euler axis with unit vector
e = (e1, e2, e3)T and is defined as q =

(
cos σ2
e sin σ

2

)
[20]. To

adapt the derivation, the relation between the quaternion q
and the rotation matrix IRB from (1) is required. It can be
formulated according to [14] as

IRB =

(
q20+q

2
1−q22−q23 2(q1q2−q0q3) 2(q1q3+q0q2)

2(q1q2+q0q3) q20−q21+q22−q23 2(q2q3−q0q1)
2(q1q3−q0q2) 2(q2q3+q0q1) q20−q21−q22+q23

)
. (9)

Moreover, the quaternion differential equation

q̇ =
1

2
q •
((

0

(B)ωQ

))
(10)

has to be solved instead of the kinematic euler equations (6).
The operator ” • ” describes the common quaternion mul-
tiplication which can also be formulated as a matrix-vector
multiplication [14]:

q̇ =
1

2


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0




0
ωx
ωy
ωz

 (11)

Using (2), (3), (9) and (11), it is possible to replace (8) with
an equivalent state space system on quaternion basis with
the now 13-dimensional state vector x = (x1, ..., x13)T =

(ẋ, ẏ, ż, q0, q1, q2, q3, ωx, ωy, ωz, x, y, z)
T as follows:

ẋ =



−(2x5x7 + 2x4x6)u1

m
−(2x6x7 − 2x4x5)u1

m
g − (x24 − x25 − x26 + x27)u1

m
1
2 (−x5x8 − x6x9 − x7x10)
1
2 (x4x8 − x7x9 + x6x10)
1
2 (x7x8 + x4x9 − x5x10)

1
2 (−x6x8 + x5x9 + x4x10)

x9x10
Jy−Jz
Jx
− Jr

Jx
x9g(u) + L

Jx
u2

x8x10
Jz−Jx
Jy

+ Jr
Jy
x8g(u) + L

Jy
u3

x8x9
Jx−Jy
Jz

+ 1
Jz
u4

x1
x2
x3



(12)

This singularity-free model serves as the basis for all simula-
tions in this paper. It should be mentioned at this point that in
order to facilitate the specification of the initial orientation
as well as the later interpretation of the quaternion-based
representation, it is useful to have two conversion formulas
at hand which help converting quaternions to Euler angles and
vice versa [14]:(

φ
θ
ψ

)
=

(
arctan2(2(q2q3+q0q1),(q

2
0−q21−q22+q23))

− arcsin(2(q1q3−q0q2))
arctan2(2(q1q2+q0q3),(q

2
0+q

2
1−q22−q23))

)
(13)

( q0
q1
q2
q3

)
=

 cos φ2 cos θ2 cos ψ2 +sin φ
2 sin θ

2 sin ψ
2

sin φ
2 cos θ2 cos ψ2 −cos

φ
2 sin θ

2 sin ψ
2

cos φ2 sin θ
2 cos ψ2 +sin φ

2 cos θ2 sin ψ
2

cos φ2 cos θ2 sin ψ
2 −sin

φ
2 sin θ

2 cos ψ2

 (14)

The hover state Ω = 0, for example, equals an initial
quaternion of q = (±1, 0, 0, 0)T . The parameter values of
the quadrotor used for simulations are summarized in table I.
They are based on either measurements on a real system that
is currently under development (m, b, d, L) or extracted from
appropriate CAD-models (Jx, Jy, Jz, Jr).

TABLE I
QUADROTOR PARAMETERS

parameter abbreviation value unit
mass m 0.58 kg

lever length L 0.25 m
roll inertia Jx 0.01 kgm2

pitch inertia Jy 0.01 kgm2

yaw inertia Jz 0.02 kgm2

rotor inertia Jr 3.8e-05 kgm2

drag factor d 2.82e-07 kgm2

thrust factor b 1.55e-05 kgm

III. DISCRETE-TIME INTEGRAL STATE SPACE
STABILIZATION CONTROL

This section presents the control concept as well as the
design of a nonadaptive integral state space controller for atti-
tude stabilization which will serve as a basis for the adaptive
schemes in Section IV. The goal of the control structure, which
is sketched in Fig. 2, is to stabilize the quadrotor and to allow



free movement in space by a selection of appropriate reference
signals. Controlled variables are the height z, the roll angle φ,
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Fig. 2. Control concept

the pitch angle θ and the yaw rate ψ̇. With this selection, any
position in space can be reached. However, it is not possible
to control an arbitrary combination of position and orientation
due to the underactuated system. This can be explained to
the effect that a nonzero roll or pitch angle always forces
a translation of the quadrotor. The relationship is used here
directly to initiate position changes by selecting appropriate
reference angles. These can be provided either by a hand-
operated remote control or a superimposed flight controller.
The output variables us = (u1,s, u2,s, u3,s, u4,s)

T of the four
controllers are mapped to reference variables of four minor
motor speed control loops which are considered sufficiently
fast to neglect their dynamics. Consequently, in the rest of
this paper we assume that u = us holds. The mapping is
realized by inverting (7), which is possible for b 6= d. In
order to realize the concept only a subset of the mentioned
quadrotor state equations are needed. By neglecting gyroscopic
torques and linearizing the rotatory system around the hover
state, we optain the simplified differential equations for the
stabilization control loops and their corresponding Laplace
transfer functions

φ̈ =
L

Jx
u2� Fφ(s) =

φ(s)

U2(s)
=

L

Jxs2
, (15a)

θ̈ =
L

Jy
u3� Fθ(s) =

θ(s)

U3(s)
=

L

Jys2
, (15b)

which result in double-integrating systems. Due to the similar
roll and pitch dynamics, only the roll control is further
explained2. Equation (15a) can also be formulated as an
equivalent continuous-time state space system with the reduced

2Height and yaw control are not in the focus of this paper, but it should
be mentioned for completeness that the height control is composed of a
discrete-time PDT1-controller with transfer function Gz(z) =

−70(z−0.99)
z−0.7

combined with a PT1-prefilter Vz(z) = 0.02z
z−0.98

and weight force compen-
sation while the yaw rate controller is a simple gain kp = 0.1 combined
with a prefilter of the same type. Set points of these two controllers are
zero. Furthermore, realistic limits have been imposed on the artificial input
variables, so that u1 ∈ [1N, 15N], u2 ∈ [−2N, 2N], u3 ∈ [−2N, 2N],
u4 ∈ [−0.05Nm, 0.05Nm] as well as appropriate anti-windup extensions.

state vector x = (φ, φ̇)T :

ẋ(t) =

(
0 1
0 0

)
︸ ︷︷ ︸

A

x(t) +

(
0
L
Jx

)
︸ ︷︷ ︸

b

u2(t)

φ(t) =
(
1 0

)︸ ︷︷ ︸
cT

x(t)

(16)

By applying the conversion formulas Ad = Φ(T ) and
bd =

∫ T
0

Φ(T − τ)bdτ with the state-transition matrix Φ(t) =
L−1

{
(Is−A)−1

}
(see for example [15]) and sample time T

to (16), the equivalent discrete-time state space system can be
formulated as follows:

x(k + 1) =

(
1 T
0 1

)
︸ ︷︷ ︸

Ad

x(k) +

(
T 2L
2Jx
TL
Jx

)
︸ ︷︷ ︸

bd

u2(k)

φ(k) =
(
1 0

)︸ ︷︷ ︸
cT

x(k)

(17)

As a basis, we use two decoupled state space controllers for
roll and pitch angles. Although the system itself has double-
integrating behavior, we extend the controllers by a discrete-
time integrator of the form FI(z) = kI

z−1 with gain kI as
shown in Fig. 3. The reason for this modification is the fact

1z−1
φ(k)φs(k) xI(k + 1) x(k + 1) x(k)

cT

Ad

bd
u2(k)

kTx

kIz−1
xI(k)

FI(z)

Fig. 3. Integral state-space roll stabilization control loop

that only then it is possible to compensate for (constant)
disturbances that act upon the input side of the controlled
system. Indeed these disturbances occur in reality due to
blade flapping effects [13]. In order to design the controller
parameters kxT and kI , system (17) is enhanced by the
integrator, and a pole placement operation is realized by using
Ackermann’s formula [16], so that all poles of the closed-
loop system lie at the real locations zi = 0.9 (T = 0.01 s).
This choice results in a good compromise between actuator
stress and dynamics. Fig. 4 shows the stabilization of the
quadrotor with initial values φ(0) = θ(0) = 70◦ (all other
initial values are zero) as well as an input disturbance reg-
ulation at t = 1.2 s. One can see that the fairly basic linear
controllers are able to successfully stabilize the system without
big overshoots even under these extreme initial orientation
values with strong coupling between the axes. Furthermore,
a strong simultaneous positive constant load disturbance mo-
mentum of 0.25 Nm acts in roll and pitch direction from
time t = 1.2 s on. This corresponds to disturbance values
of u2d = u3d = 1 N for the artificial input variables and thus
50% of the saturation limits. Despite this large disturbance, the
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angle control deviation only increases to a maximum of 4◦ and
is compensated completely by the additional integral term. The
simulation underlines the effectiveness and quality of the state
controller. However, the fixed control parameters cannot cope
with varying system inertias. Fig. 5 shows the step response
of the roll controller mentioned above, which is designed
for the nominal inertia Jx = 0.01 kg m2 when the system
actually has twice and four times that inertia respectively.
While an increase to the double value is unproblematic due
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Fig. 5. Step response of nonadaptive control loop for different inertias

to the robustness of the controller, the oscillation tendency
is much more pronounced if the fourfold inertia is applied.
This would disturb video recordings from a quadrotor platform
tremendously, for example, so that an adaptation seems vital
in this case. Furthermore, an adaptation makes sense if the
inertia tensor is completely unknown which will render a
standard control design impossible. A self-tuning controller
avoids the complex measurement or calculation of the inertias
and will facilitate first-time operation. Therefore, two adaptive
schemes are proposed to solve the in hand deficits of a standard
quadrotor control design.

IV. ADAPTIVE CONTROL OF A QUADROTOR

A. Model Identification Adaptive Control (MIAC)

In the first case, adaptation is realized for the integral state
controller described in Section III. Roll and pitch inertias are
estimated by two parallel running Recursive Least-Squares
(RLS) estimators with exponential forgetting in closed-loop
combined with an online controller synthesis. The proposed
parallel operation is valid for small angles – resulting in a
decoupling of the axes – and a diagonally dominant inertia
tensor3. Input variables of the estimators are u2 and u3 as well

3This is only a minor constraint in practice as one will always aim to place
additional loads symmetrically to the structure.

as the actual roll and pitch angles as can be seen in Fig. 6. In
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Fig. 6. Model identification adaptive stabilization control loops

order to calculate u2 and u3, the thrust factors of the propellers
have to be known. This condition is considered to be fulfilled.
The online controller synthesis is done using Ackermann’s
formula [16]. As a design criterion the poles of the closed-
loop system should stay at the optimal location zi = 0.9
(T = 0.01 s) independent of the inertias. This should result
in a non-oscillating transient step response. For estimating the
parameter vector Θ̂ = (â1, ..., âm, b̂1, ..., b̂m)T of a Z-transfer
function with dead time d of the form

F (z) =
Y (z)

U(z)
=

b1z
−1 + ...+ bmz

−m

1 + a1z−1 + ...+ amz−m
z−d, (18)

the recursive least squares estimation is given by

Θ̂(k + 1) = Θ̂(k) + γ(k)
(
y(k + 1)−ψT (k + 1)Θ̂(k)

)
,

γ(k) =
P (k)ψ(k + 1)

ψT (k + 1)P (k)ψ(k + 1) + λ
,

P (k + 1) =

(
I − γ(k)ψT (k + 1)

)
P (k)

λ
,

(19)

with the correction vector γ(k), the regression vector ψ(k) =
(−y(k−1), ...,−y(k−m), u(k−d−1), ..., u(k−d−m))T , the
forgetting factor λ and the covariance matrix P [17]. Adapting
to our case, we first convert (15a) to discrete-time by applying
the zero-order hold conversion

Fzoh(z) =
z − 1

z
Z

[
L−1

[
1

s
F (s)

]
t=kT

]
(20)

in which Z represents the Z-transform, L−1 conforms to
the inverse Laplace-transform of the continuous-time process,
k is equal to a nonnegative integer and T refers to the



sampling time [16]. The corresponding discrete-time system
can consequently be written in form of the Z-transfer function

Fφ(z) =
T 2L
2Jx

(z−1 + z−2)

1− 2z−1 + z−2
. (21)

A coefficient comparison with (18) reveals that the denomi-
nator coefficients ai are independent of the inertia and that
Jx can be calculated from b̂1 as well as b̂2. In our case
the inertia is therefore calculated from the more accurately
estimated average as Ĵx = T 2L/(b̂1 + b̂2). Fig. 7 shows the
simulation results for the proposed MIAC in comparison to
the nonadaptive control loops. During the first 5 seconds, the
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Fig. 7. Self-tuning and behavior of MIAC during inertia changes

inertias have their nominal values Jx = Jy = 0.01 kg m2

for which the nonadaptive controllers were optimized. At
t = 5 s they are instantly increased to Jx = 0.04 kg m2

and Jy = 0.03 kg m2 which can be considered a worst case
scenario of a sudden load change during flight. Plotted are the
reference values φs and θs, the controlled variables φ and θ,
the inertia adaptation as well as the drive speeds ni. For the
excitation signals, square waves of amplitude 5◦ are chosen
as reference variables for the roll and pitch control loop. This

can be considered sensible because it will result in a self-
adaptation of the stabilization controllers under minor oscilla-
tory translational movements of the quadrotor. The initial con-
troller parameters are kT (0) = 0, kI(0) = 0, i.e. considered
completely unknown. Initial numerator parameters are fixed at
b̂1(0) = b̂2(0) = 1.25 · 10−2 which corresponds to only 10%
of the actual inertia and simulates a strong misestimation of
the initial parameters. The initial values of the denominator are
set to the right values â1(0) = −2 and â2(0) = 1 which are
known because of the system structure. The forgetting factor
is λ = 0.99, initial covariance matrices are diagonal matrices
with P (0) = diag(100, 100). The estimators rapidly converge
to the correct nominal inertia values and the control quality
is equal to that of the optimal adjusted fixed state controller.
Under load changes, the adaptation displays its potential as it
shows an almost instantaneous optimal step response without
overshoot in comparison to the nonadaptive case. The drives’
speed values clearly reveal the swaying of the quadrotor as
well as the increased required actuating values to satisfy the
dynamic specifications under larger inertias. If the adaptation
is only used for self-tuning, the estimator can of course be
deactivated after convergence and the controller parameters
remain fixed.

B. Model Reference Adaptive Control (MRAC)
As a second variant, a Model Reference Adaptive Control

scheme as sketched as in Fig 8 is proposed. There are two

Quadrotor

Roll controller

Pitch controller

u2

u3

φ, φ̇

θ, θ̇

φs

θs

Parameters

Adaptive law
Reference model

(Roll)

Reference model

(Pitch)
Adaptive law

Parameters

φg, φ̇g

θg, θ̇g

Fig. 8. Model reference adaptive stabilization control loops

equivalent reference models, one for roll and one for pitch
movements, which represent the desired closed-loop dynamics
of the quadrotor4. A Lyapunov-based adaptive law5, that
guarantees the asymptotic stability in case of linear systems,
estimates the parameters of a state space controller of the form

u2 = −k̂Tx+ v̂φs, (22)

4Only the roll control loop is described further, the pitch loop behaves
accordingly.

5The derivation can be found in the appendix and is roughly based on [19].



with feedback gain k̂
T

, prefilter v̂ and state vector x = (φ, φ̇)T

with the help of the reference variable φs and state errors
ε = x− xg according to

k̂
T

=

∫ t

0

bTg Pεx
T dτ + k̂

T
(0), (23a)

v̂ = −
∫ t

0

bTg Pεφsdτ + v̂(0). (23b)

The matrix P in (23) is symmetric, positive definite and has
to fulfill the matrix Lyapunov equation

PAg +AT
g P = −Q (24)

for symmetric, positive definite matrices Q which act as a
design parameter that influences the transient of the adaptation
itself6 [19]. The stable linear roll reference model is given in
the same canonical form as (16) in order to fulfill the compat-
ibility criteria of perfect model-following automatically:

ẋg = Agx+ bgφs =

(
0 1
−100 −20

)
xg +

(
0

100

)
φs (25)

All eigenvalues are consequently fixed to −10 which equals
eigenvalues of 0.9 of a discrete-time system for T = 0.1 s.
Thus the goal of the adaptation is to enforce the same closed-
loop dynamics as the nonadaptive control of Section III in
order to facilitate the comparison. Fig. 9 shows the self-tuning
as well as the adaptation of the controller to changing system
inertia in comparison to the nonadaptive version. During
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Fig. 9. Self-tuning and behavior of MRAC during inertia changes

the first 10 seconds the inertias have their nominal values
Jx = Jy = 0.01 kg m2 for which the nonadaptive controllers
were optimized. At t = 10 s they are instantly increased to
Jx = 0.04 kg m2 and Jy = 0.03 kg m2 as in the simulation of
Section IV-A. Plotted are once again the reference variables
φs and θs and the controlled variables φ and θ. The initial
controller parameters are kT (0) = 0, i.e. considered com-
pletely unknown, and Q = diag(150, 150). The dynamics of

6This equation can be computed off-line.

the MRAC equals the dynamics of the nonadaptive controller
and the self-tuning can be considered fulfilled after a short
adaptation transient. Furthermore, the adaptation to the inertia
parameter step works smoothly and the benefit in opposite
to the nonadaptive controller becomes obvious. Disturbing
oscillations are completely suppressed.

V. CONCLUSION

Two adaptive control designs (MIAC and MRAC) have been
applied to a quadrotor unmanned aerial vehicle in order to
cope with unknown and varying system inertia. Numerical
simulations based on a singularity-free nonlinear model in
quaternion representation reveal their superiority over the
fixed-parameter integral state controller designed in this work.
Oscillations in the step response of the attitude stabilization
control loops due to varying inertia are removed effectively
by both schemes which is considered especially useful for the
increasingly used modular quadrotor platforms with changing
loads.

APPENDIX

The objective of the applied MRAC design method accord-
ing to [19] is to choose an input vector u ∈ Rp in a way
that all signals in closed-loop remain bounded and that the
states of the n-dimensional unknown system ẋ = Ax +Bu
with system matrix A ∈ Rn×n and input matrix B ∈ Rn×p
follow the states of a parallel reference model of the form
ẋg = Agxg+Bgw with Ag ∈ Rn×n being a stable reference
system matrix, Bg ∈ Rn×p the desired input matrix and
w ∈ Rp a bounded reference input vector. If A and B were
known, a controller of the form u = −Kox + V ow with
optimal feedback matrix Ko ∈ Rp×n and optimal prefilter
matrix V o ∈ Rp×p could be applied, which would result in
the closed-loop behavior ẋ = (A − BKo)x + BV ow. If
one chooses Ko and V o in a way that Ag = A−BKo and
Bg = BV o holds, then the dynamics of the controlled system
would equal that of the reference system. Due to A and B
being unknown, the (time-dependent) controller parameters K̂
and V̂ have to be estimated by an appropriate adaptive law.
With the state error ε = x−xg as well as the parameter errors
∆K = K̂ −Ko and ∆V = V̂ − V o, the error differential
equation

ε̇ = Agε+BgV
−1
o (−∆Kx+ ∆V w) (26)

can be derived which itself can be considered a nonau-
tonomous system. If one finds a Lyapunov function V , then
the stability of the equilibrium ε = ∆K = ∆V = 0 is
guaranteed. According to [19], the positive definite function

V (ε,∆K,∆V ) = εTPε+ tr(∆KTΓ∆K + ∆V TΓ∆V )
(27)

in which PAg + AT
g P = −Q holds for arbitrary positive

definite matrices Q can be considered a Lyapunov candidate.
Introducing the new quantity Γ−1 = V osgn(l) with l > 0 if



V o positive definite and l < 0 if V o negative definite, the
time derivative of (27) along the trajectories of (26) results in

V̇ = ε̇TPε+ εTP ε̇+ tr(∆K̇
T
Γ∆K + ∆KTΓ∆K̇

+ ∆V̇
T
Γ∆V + ∆V TΓ∆V̇ )

= −εTQε+ 2tr(∆KTΓ(∆K̇ −BT
g Pεx

T sgn(l))

+ ∆V TΓ(∆V̇ +BT
g Pεw

T sgn(l)))

(28)

after a longer calculation. Choosing the adaptive law according
to [19] as

∆K̇ =
˙̂
K − K̇o =

˙̂
K = BT

g Pεx
T sgn(l), (29a)

∆V̇ =
˙̂
V − V̇ o =

˙̂
V = −BT

g Pεw
T sgn(l), (29b)

then the trace in (28) vanishes and we get V̇ = −εTQε,
which renders V a valid Lyapunov function because of its
negative semidefinite derivative. Consequently, the equilibrium
state of the error equation is stable in the sense of Lyapunov,
but not necessarily asymptotically stable. However, with the
help of the Lemma of Barbalat [21], it can be easily verified
that lim

t→∞
V̇ = lim

t→∞
(−εT (t)Qε(t)) = 0 holds. Consequently

the state errors decline to zero independent of the initial
parameters and the adaptive control system is said to be
globally asymptotically stable.
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